
ESD-TR-75-8F

ESD ACCESSION Llbl'

XHRICallNo. Q *-D 0 & &

CopyKo. / of ^>cys.

RESEARCH IN PROGRAM OPTIMIZATION TECHNIQUES

President and Fellows of Harvard College
Cambridge, MA 02138

30 June 1975

Approved for public release;
distribution unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

AbAolSD^I

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

E? REYNOLDS ? GEORGE E
Techniques Engineering Division
Information Systems Technology
Applications Office

. USAF
Chief, Techniques Engineering Division
Information Systems Technology
Applications Office

FOR THE COMMANDER

'<ry£t<ni^lt± •7-y^^^^LJ
FRANK J. EM#A, Colonel, USAF
Director, Information Systems

Technology Applications Office
Deputy for Command and Management Systems

SECURITY CLASSIFICATION OF THIS PAGE (MThen Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-75-81
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

RESEARCH IN PROGRAM
OPTIMIZATION TECHNIQUES

5. TYPE OF REPORT ft PERIOD COVERED

1 June 1974 - 31 May 1975

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(n)

Thomas E. Cheatham, Jr.

8. CONTRACT OR GRANT NUMBER(«)

F19628-74-C-0208

9 PERFORMING ORGANIZATION NAME AND ADDRESS

President and Fellows of Harvard College
Cambridge, MA 02138

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division
Hanscom Air Force Base, MA 0(731

12. REPORT DATE

30 June 1975
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME ft ADORESSf// dllterent horn Controlllnt Olltce) 15. SECURITY CLASS, (ot thie report)

UNCLASSIFIED

15«. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

N/A
16. DISTRIBUTION STATEMENT (ot thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ot the abetract entered In Block 20, 11 dlllerent trom Report)

IB. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree eide it necessary and identity by block number)

Structured Programming Temporary Storage Minimization
Program Optimization Symbolic Evaluation
Implementation Languages Program Metering
Register Assignment Common Expression Removal

20. ABSTRACT (Continue on reveree aide It neceeeary and Identity by block number)

In the context of the ECL programming system, general techniques for program
optimization at high levels of language and special purpose techniques to enhance use
of ECL for systems programming have been studied. The specific problems discussed are
the efficient representation of knowledge about programs, the use of measurements to
guide program improvement, compiler optimization under strict resource constraints and
user control of machine level code optimizations such as register assignment.

DD ,: FORM
AN 73 1473 EOITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGEfWiwi D»tm Bnttnd)

SECURITY CLASSIFICATION OF THIS P AGEfWfcen Dmtm Entered)

I. Introduction

An objective review of program optimization technology

has revealed a number of problems whose solutions are both

essential (if new methods of organizing program development

are to be successful) and relatively accessible today.

(a) Structured programming techniques emphasize modular

program construction and well-defined layers of

representation in order to minimize the cost of

producing correct, reliable software. Often, however,

the structure introduced for clarity inhibits direct

translation of an abstract algorithm to an efficient

machine language form. The trend toward structured

programming increases the need for tools to merge

isolated modules and to eliminate inefficient layers of

structure in a cost effective way. If efficiency

remains the price for clarity and maintainability, the

new disciplines will not be fully accepted.

(b) Development of programs by stepwise refinement should be

synonymous with program optimization. Program

improvement aids should not be limited to the

translation of source to machine code; they should be

employed at each step from an abstract level of

representation to a more concrete level.

(c) Optimizers are too often expensive, weakly governable

engines whose workings are not easily grasped by users

and whose effects are only indirectly observable through

changes in the runtime behavior of compiled programs.

While it should not be necessary to understand a tool in

order to use it, the tool should nevertheless be

precisely controllable and readily adaptable to

accomplish special tasks. Its effects should be

expressed in terms the programmer can appreciate,

preferably a modified or augmented copy of his program.

Where the user must take control of operator definitions

and data representations at the hardware level, he

should be able to do so without completely suspending

optimization.

(d) It is now time for the results of research in the field

of verification and automatic programming to begin

affecting the design of practical tools. Current

optimizers make too little use of knowledge deducible

from programs or from measurements of their behavior,

and are inflexible about accepting help in the form of

assertions about the programs or their data. Too often

the lack of a complete or efficient algorithm for a

particular problem has inhibited the use of sound

heuristics in critical regions.

Our approach to the preceding problems has been

two-fold. In the context of the ECL programming system, we

have examined (1) general techniques for program

optimization, including the efficient representation of

knowledge about programs and the use of measurements to

guide analysis, and (2) particular code optimization

strategies to enhance the use of EL1 as an implementation

language.

The general optimization techniques we have studied are

now being applied in two settings.

(a) An interactive program transformation facility called

the Structured Programming Laboratory (SPL) is now being

designed. The SPL will address the issues of

optimization at high levels of language, precise control

of tools and visibility of their results, and the use of

manifest, measured, and user provided knowledge about

programs to assist their optimization.

(b) An optimization phase is being added to ECL's

interpreter-compatible compiler. Although designed to

operate under strict resource constraints, and required

to be consistent with the full power of ECL's data

structure and control definition facilities, the

optimizer we have developed incorporates some

interesting techniques for detecting and removing the

sorts of redundancy that arise most frequently.

To experiment with the use of EL1 as an implementation

language, a compiler for a systems programming dialect

(SPECL) is being constructed. The SPECL project complements

work on the SPL, since it is concerned primarily with

optimizations at the machine level: reordering computations

to minimize temporary storage, register allocation and

assignment, and the like.

Section II of this report gives an overview of how

optimization at the source level will be performed using the

SPL. Sections III and IV discuss aspects of the

representation of facts about programs and the use of

measurements to aid code improvement. Section V describes

the new optimization phase of the compatible compiler, and

Section VI discusses the SPECL compiler.

II. Optimization in the Structured Programming Laboratory

There seems to be a "critical mass" phenomenon in

program optimization: the practicality of a single tool is

greatly enhanced by the existence of others. Such classical

loop optimizations as strength reduction and test

replacement, for example, may give rise to "dead" variable

assignments that must be removed. Open-substitution of

procedures, i.e. the replacement of procedure calls by

equivalent expressions derived from the procedure bodies,

leads to opportunities for redundancy elimination. In

short, the whole often seems more effective than the sum of

the separate parts. Our studies of program specialization

and measurement-assisted compilation have repeatedly

indicated that to forge new tools one must rely on an

arsenal of existing techniques.

Thus, a principal aim of our recent work has been the

design of the Structured Programming Laboratory, a system

based on ECL that will both incorporate the best of our

existing program development and manipulation tools and

serve as the setting for future work on program improvement.

To its users, the SPL will act like a program editor

with special facilities to help manage the ebb and flow of

program development from abstract specification to concrete

realizaton. As successive refinements take shape, they will

be recorded in a development history. The history will

exhibit the global structure of developing systems and

display the logical connection among decisions made during

design. The explicit retention of this structure not only

aids understanding and maintenance of the program, but can

be used to support optimization during refinement as well.

Suppose a program to manipulate sets makes use of a

special syntactic structure to iterate over the elements of

a set. An example might be

FORNEACH E IN SUCCESSORS(H) DO
F(E) ->

S <- S UNION {E}

This iterator might be implemented by a rewriting rule or

"syntax macro" such as

FORNEACH E IN $S DO $B —> .
BEGIN

DECL TEMP:SET BYVAL $S;
REPEAT

EMPTY(TEMP) => EXIT;
DECL E:ELEMENT LIKE NEXT(TEMP);
$(B)

END;
END;

In a conventional system each call of this macro would be

expanded, and the set primitives EMPTY and NEXT perhaps

further expanded before optimization could begin. In the

SPL, it will be possible first to study the improvement of

the macro body in isolation. For instance, storage for the

element E might better be allocated once outside the loop:

DECL E:ELEMENT;
REPEAT

EMPTY(TEMP) => EXIT;
E <- NEXT(TEMP);
$(B);

END

Nor is it necessary that every call be expanded in-line.

The optimizer might generate a subroutine from the macro

body, taking a SET $S and a parameterless function $B as

arguments. Or it might mix the open and closed

implementations depending on estimates of the relative

importance of the points of call.

Although quite simple, this example shows the

importance of not throwing away useful structural

information only to try to recover it later through

extensive global analysis. Recognizing and merging

instances of this little set mapping routine, using an

expand-then-optimize strategy, might become an expensive

task given sizable bindings for $B.

We further feel that the approach of involving

optimization at high language levels can lead to a kind of

bootstrapping effect. Where extended operators (such as

FORNEACH) are frequently used in programs written in high

level terms (like the SET domain), it will be profitable to

pre-analyze their definitions, singly or in typical

combinations, to identify a priori the special conditions

under which simplifications can be made. In the FORXEACH

case, the loop body can be reordered if the argument SET $S

is not initially EMPTY. If $S is completely known at the

point of call, it may not be necessary to generate a loop at

all. In short, it may be possible to extend the SPL's

general optimization algorithms to special domains, and to

minimize the cost of translating programs over those

domains.

III. Knowledge About Programs - The Context Graph

Useful manifest information is sometimes overlooked by

conventional optimizers because its discovery requires

deductive power beyond that of the analyzer or because

maintaining sufficient facts about the dynamic execution

states of a program appears too expensive.

Consider the sequence

1 < I AND I < LENGTH(A) -> [) ... A[I] ... (]

Few compilers would take cognizance of the predicates

involving I to eliminate range checking when the selection

A[I] is compiled. Yet well-written, defensive programs

often include just such checks on data, making the further

checking required by language semantics redundant. There is

a host of similar situations in which optimizers miss

important semantic features because of the difficulty or

expense of bookkeeping.

The heart of the SPL will be a Symbolic Evaluator.

Part of its job will be to manage program knowledge to make

simplifications possible and efficient. While the design of

the Evaluator is not yet fixed, we will describe a method we

have developed by which context-dependent facts can be

maintained with little or no storage duplication and only

modest access overhead.

Facts such as those about the value of I in the example

above will be stored in a data base, accessible by hashing

the names of items they describe. Each fact will be tagged

with a context descriptor. We use the term context to

denote a program region in which control is strictly

sequential. A context graph is a labeled, acyclic, directed

graph whose nodes represent the,contexts (flow blocks) of

the program. The context labels are integers assigned in

evaluation order: if node Ni can precede node Nj during some

computation (ignoring loop traversal), then LABEL(Ni) <

LABEL(Nj). The arcs in a context graph are of two kinds:

possible predecessor (PP) arcs and essential predecessor

(EP) arcs. Each node N except the unique entry node has one

EP arc pointing to its immediate flow dominator, the nearest

context through which control must always pass to reach N.

Each node has a set of PP arcs pointing to the contexts that

may immediately precede it in some computation.

To show how the context discrimination works, we will

give an algorithm for deriving the set of possible values

for some variable V at a particular program point C, given

the set of value-facts about V for the whole program.

Let G be the context graph of the program with E its

unique entry node. Define a marking of a context graph as

an ordered subset of the nodes, in decreasing order of

label. The set of contexts in which program variable V

acquires new values will be given by a marking M of graph G.

The problem is to derive a submarking S from M that

satisfies two conditions with respect to the particular

context of interest C:

(1) each member of S can be reached via PP arcs from C
without passing members of M, and

(2) every PP path from C to E (the unique entry node)
contains at least one member of S.

The members of S correspond to bindings of V that can still

be in effect when control reaches C during program

execution.

A simple scheme for computing S can be based on the

connectivity matrix P defined by

P[I, J] = the number of PP paths in G from the node
labeled I to that labeled J.

P can be computed (once, in advance) using Warshall's

algorithm with arithmetic sum and product operations. Or it

can easily be developed "on the fly" as context labels are

assigned during initial analysis.

To see how S can be obtained efficiently using P,

imagine an intermediate stage of the computation at which a

partial marking S has been produced. That is, members of S

(L in number) have been selected from M in decreasing label

order, with those not satisfying condition (1) above

rejected. The process is to continue until condition (2) is

also satisfied. Suppose also that associated with the Kth

member of set S is an integer, NUMBER\CLEAH[K], which gives

10

the number of PP paths from C to the entry E that pass

through S[K], but not through any S[J], for 1 <. J < K.

The next member of S is found by examining successive

candidates T from M until one is found having at least one

clear PP path (i.e., unmarked by members of M) from C, or

until M is exhausted. Note that any marked path from C to T

must contain at least one S node, since any marker from M

that could occlude T from C will already have been

considered. So it suffices to count paths to T that are

clear of S nodes.

Let NUMBER\TO\T be P[LABEL(C), LABEL(T)], the total

number of paths from C to T. Since the labels along every

such path must decrease, the number of clear paths is

FOR K TO L REPEAT
NUMBER\TO\T <+
- P[LABEL(S[K]), LABEL(T)] * NUMBER\CLEAR[K]

END

where <+ is an operator that increments its left operand by

its right, and the product computed on the Kth iteration

represents the number of paths from C to T that begin with

clear paths from C to S[K].

If there are clear paths to T, then T is inserted at

the shallow end of S and NUMBER\CLEAR[L+1] is installed.

Since T occludes some new paths from C to E, the entry of G,

a counter is decremented to determine whether every path to

11

E has been blocked. If so, the program halts with S as its

result.

The following ECL procedure computes the submarking of

M that occludes node C, if one exists. It is assumed that

each member of M has a lower label than LABEL(C) (i.e.,

potential values for V lying past C will be discarded

outright), and that the connectivity matrix P has already

been computed.

EXPR(M:MARKING, C:NODE; MARKING)
< MARKING, "C BLOCKED" > <<
BEGIN
DECL NUMBER\CLEAR:SEQ(INT) SIZE CARDINALITY(M);
DECL NUMBER\TO\E:INT BYVAL P[LABEL(C), LABEL(E)];
DECL NUMBER\TO\T:INT;
DECL S:MARKING;
DECL L:INT /* 'CARDINALITY OF S';
FORNEACH T IN M
DO BEGIN
NUMBER\TO\T <- P[LABEL(C), LABEL(T)];
NUMBER\TO\T = 0 => NOTHING /* 'NO PATHS FROM C TO T';
FOR K TO L
REPEAT
NUMBER\TO\T <+
- (NUMBER\CLEAR[K] * P[LABEL(S[K]), LABEL(T)]);

END;
NUMBER\TO\T = 0 => NOTHING /* 'T MARKS NO NEW PATHS FROM C;
APPEND(S, T) /* 'INSERT T AT THE END OF S';
NUMBER\TO\E <+
- (NUMBER\TO\T * P[LABEL(T), LABEL(E)]);

NUMBER\TO\E = 0 -> RETURN(S, "C,BLOCKED");
NUMBER\CLEAR[L <+ 1] <- NUMBER\TO\T;

END;
S *

END;

The algorithm can be refined by making use of the

essential predecessor information in the context graph.

12

Obviously, C will be blocked as soon as one of its flow

dominator nodes is blocked. So for each trial node T we

need only consider paths to T from the earliest essential

predecessor of C whose label exceeds LABEL(T).

The changes to the procedure are straightforward. C is

bound BYVAL so that it can be rebound to the least

back-dominator of the input C as each candidate T is chosen.

(We assume that EP(E) points to a special node whose LABEL

is less than any other.) A special check is made for the

case in which T is one of C's essential predecessors. TAIL,

a new local INT, will index the first element of S installed

since C's last adjustment. Previously discovered S nodes

cannot possibly block the new C; hence, they are disregarded

by the summation over blocked paths from C. That loop

becomes FOR K FROM TAIL TO L REPEAT The full

algorithm is

13

EXPR(M:MARKING, C:NODE BYVAL; MARKING)
< MARKING, "C BLOCKED" > <<
BEGIN
DECL NUMBER\CLEAR:SEQ(INT) SIZE CARDINALITY(M);
DECL NUMBER\TO\E:INT BYVAL P[LABEL(C), LABEL(E)];
DECL NUMBER\TO\T:INT;
DECL S:MARKING;
DECL L:INT /* 'CARDINALITY OF S';
DECL TAIL:INT BYVAL 1 /* 'TAIL OF S FOR CURRENT C;
FORNEACH T IN M
DO BEGIN
LABEL(EP(T)) GT LABEL(T) ->
BEGIN
REPEAT
C <- EP(C);
LABEL(EP(C)) LT LABEL(T) => NOTHING;

END;
C = T =>
[) APPEND(S, T); RETURN(S, "C BLOCKED") (];

TAIL <- L + 1 /* 'EARLIER S MEMBERS CANT HIDE C';
NUMBER\TO\E <- P[LABEL(C), LABEL(E)];

END;
NUMBER\TO\T <- P[LABEL(C), LABEL(T)];
NUMBER\TO\T = 0 => NOTHING /* 'NO PATHS FROM C TO T';
FOR K FROM TAIL TO L
REPEAT
NUMBER\TO\T <+
- (NUMBER\CLEAR[K] * P[LABEL(S[K]), LABEL(T)]);

END;
NUMBER\TO\T = 0 => NOTHING /* 'T MARKS NO NEW PATHS FROM C;
APPEND(S, T) /* 'INSERT T AT THE END OF S';
NUMBER\TO\E <+
- (NUMBER\TO\T * P[LABEL(T), LABEL(E)]);

NUMBER\TO\E = 0 -> RETURN(S, "C BLOCKED");
NUMBER\CLEAR[L <+ 1] <- NUMBER\TO\T;

END;
S;

END;

The computed submarking S gives the set of possible

values for V at C as accurately as can be determined from

static analysis. Note that the speed of the algorithm

depends not on the size of the graph G, but only on the size

of the initial set of possibilities. For a typical

variable, this set is likely to be small.

14

IV. Uses of Measurements in Optimization

Execution profiles have been recognized for some years

as helpful aids to the programmer. They guide his attention

to the small but critical inner loops where programs

typically spend most of their time. And profiles highlight

sections of the program not being executed either because of

bugs or because of inadequate test data.

In the SPL, timing measurements and frequency counts

taken from representative sample data will aid not only

human users but will help drive refinement and optimization

tools as well. Because metering probes are simply ECL data

items, they can be included along with other program

knowledge in the SPL data base. Because ECL permits them to

be placed and activated with great selectivity, they can

give a clearer picture of data attributes and program

behavior than conventional profiles.

Measurements act both as a guide to important program

regions and as a rein on the analyzer. It can be permitted

to expend most effort where the potential payoff is

greatest. Comparison of frequency counts may lead to

reordering of branches, when that can be done safely, and

frequencies enable the decision whether to expand a macro or

call a subroutine to be made selectively.

The fact that a region is not executed at all under

15

certain conditions may suggest simplifications to be

verified either by the Symbolic Evaluator or by asking the

user. This may be especially fruitful when a very general

procedure is being applied to a special case task.

Consider, for example, this doubly recursive list structure

copy routine:

COPY =
EXPR(A:LIST; LIST)

BEGIN
ATOMIC(A) => A;
ALLOC(LISTCELL OF

COPY(HEAD(A)) /* 1,
COPY(TAIL(A)) /* 2);

END

Suppose that COPY is called in an iteration whose skeleton

is

REPEAT
• • •
L <- READLISTO;
• • •
COPY(L) /* 3;
• • •

END;

In the SPL it will be possible to plant metering probes that

discriminate among several points of call of a function.

After being metered and invoked by its calling program on

100 sample input lists, the COPY procedure, printed with its

probes, might look like:

EXPR(A:LIST; LIST)
BEGIN

<300, 300, 100> ATOMIC(A) => <300, 100, 0> A;
<0, 200, 100> ALLOC(LISTCELL OF

COPY(HEADU)) /* 1,
COPY(TAILU)) /* 2);

END

16

The elements of the frequency tuples <c1, c2, c3> correspond

respectively to the labeled points at which COPY is called.

The zero counts are interesting and can be used as cues by

the Symbolic Evaluator. The fact that ATOMIC(A) is never

FALSE when COPY is called from point 1 suggests that HEAD(A)

is never a list; that is, that input lists will always be

linear. If the user confirms this guess, then COPY can be

significantly simplified: its first recursive call can be

replaced by HEAD(A). The fact that ATOMIC(A) is never TRUE

when the point of call is 3 suggests that input lists L are

never empty. If this were also confirmed, it might be

advantageous to avoid one test per call by replacing COPY(L)

with ALLOC(LISTCELL OF HEAD(L), COPY(TAIL(L))).

An important feature of the SPL will be an

implementation library, a collection of packages oriented

towards specific problem domains, each containing syntactic

extensions, modes and mode gerators, debugging aids, and

sets of alternative data representations and access

algorithms. Use of preplanted metering probes by these

packages should be a most effective way of providing machine

assistance during implementation, since a package can be

built to interpret its own probes intelligently. A sorting

package, for example, can collect statistics during

development and testing of a user's program and then give

him quantitative advice on which strategy to select for the

production version. A sparse matrix package can gather

17

measurements not only on the patterns of sparseness of

matrix elements but on the accessing sequences most commonly

used. It can then offer the user an assessment of the

space/time trade-offs involved in his particular

application.

V. Optimization Phase in the ECL Compatible Compiler

While the SPL will help its users eliminate or avoid

major redundancy at the source level, it should not be

forced to carry the process too far. A little redundancy

often makes a program easier to read. Straightforward

optimizations not requiring the full machinery of the SPL

should properly be included in the machine code generator.

We have therefore designed and are now coding an

optimization pass for ECL's compatible compiler. Called

Pass 1.5, it walks the program tree output by Pass 1 (the

analysis phase) and produces a modified tree for input to

Pass 2 (the code generation phase). To permit the compiler

to remain usable within limited resources, we have chosen to

concentrate on the problem of eliminating redundant

subexpressions, and on the so-called "invalidation problem"

for potentially available expressions.

The invalidation problem arises because sharing

patterns among variables and data structures permit hidden

18

side effects to destroy the availability of expressions not

manifestly affected. For example, suppose X and Y are LIST

variables, and consider the sequence

... HEAD(TAILU)) ...
Y <- NEWLIST;

... HEAD(TAILU)) ...

Unless it can be shown that Y is shared neither with X nor

with TAIL(X), the value of HEAD(TAIL(X)) must be recomputed;

that is, it is invalidated by the possible side effect. In

a language with the rich potential for sharing that ECL has,

the relationship between X and Y may be quite obscure,

particularly if they are formal parameters or free variables

of the procedure being compiled. This is sometimes called

the "aliasing problem."

Our approach in Pass 1.5 is to cope as effectively as

we can with the invalidation problem without engaging in

intense analysis. Fortunately, a significant number of

potentially damaging side effects can be ruled out on very

simple grounds of scope, storage status (heap versus stack)

or data type.

Two types of common subexpressions are distinguished:

pure values and proper objects. Pure values are expressions

like X + Y and LENGTH(A) whose values are transient; that

is, they occupy no identifiable place in storage. The

availability of a pure value for reuse ends if any of is

subexpressions is redefined. When this type of redundant

L9

expression is removed, its replacement acts like a "runtime

constant": storage for the value is allocated at procedure

entry and is initialized when the "parent" or defining

occurrence is evaluated. Thereafter it may be referenced

but not changed.

Proper object expressions are those with identifiable,

reusable storage locations, such as A.FIELD[I] and VAL(P).

When found redundant, they too are replaced by references to

temporaries. But proper object temporaries behave like

shared variables, rather than constants. For example, the

sequence

DECL A .-RECORD;

PRINT(A.FIELD[I]) ;

A.FIELD <- NEWFIELD;
PRINT(A.FIELD[I]) ;

would be replaced, in effect, by

DECL A:RECORD;

DECL T1:ANY SHARED A.FIELD;
DECL T2:ANY SHARED T1[I];
PRINT(T2);

• • •
T1 <- NEWFIELD;
PRINT(T2);

Care must be taken to see that stack space for proper object

temporaries is allocated at the same block level as the

parent object (RECORD A in the example above). If it were

allocated at the procedure level, for example, dangling

references could outlive an object allocated on the stack,

20

leading to confusion for the storage manager.

As Pass 1.5 walks the program tree, it maintains an

Available Expression List (AEL). Only simple expressions

using built-in operators are included; control expressions

are not. Each expression listed in the AEL is classified by

mode, by context of creation, by expression type (pure or

proper), and if proper, by scope and locale (local versus

global, stack, heap or unknown). As a new simple expression

is walked, it is tested for redundancy with existing

available expressions. Two expressions match when

(1) they have the same operator, and
(2) they have the same number of operands, and
(3) each pair of corresponding operands match recursively.

If the new expression matches none of the AEL members it is

made available by adding it to the list. Otherwise it is

linked to the existing expression subtree.

Various transitions and events in Pass 1.5's walk of

the tree cause it to scan the AEL and prune invalid

elements. A change of context, for example, may cause some

expressions to become "unavailable" while the validity of

others is re-established. A control excursion, such as a

call to a procedure whose effects are unknown, forces all

available expressions to be dropped except those depending

strictly on "hidden" local names. Pruning expressions at an

assignment is essentially a pattern matching process, using

the object descriptions stored with AEL members. When the

21

object being assigned is well defined, e.g. an unshared

local variable of known mode, affected expressions can be

pruned quite precisely. In less well resolved cases of

course, more AEL elements may have to be removed to

guarantee correctness. For example, VAL(INTPTR) <- I + 1

invalidates not only the expression being redefined but also

all INT expressions not known to reside on the stack.

Even so, it appears that the inexpensive classification

scheme used in Pass 1.5 will provide a most satisfactory and

efficient adjunct to the more powerful tools of the SPL.

VI. The SPECL Compiler

The SPECL (Systems Programming in ECL) project is

intended to extend the use of ECL into areas normally

reserved for so-called "implementation languages." It is a

dialect of ECL that can be compiled to stand-alone machine

code that runs without the support of ECL's runtime

facilities. It offers the opportunity to "contract" ECL for

special applications, since SPECL-produced code can be

augmented by just the runtime support (such as storage

management or I/O) that's needed.

SPECL also offers access to the implementation of

operators and the choice of underlying data representations

at the hardware level. For example, suppose a programmer

22

wants to implement doubly linked lists using a minimum of

storage for the links. One trick is to give each element a

single link field containing the bitwise exclusive-or of the

address of its predecessor with that of its successor.

Given pointers to any two successive elements it is then a

simple matter to move forward or backward along the list.

SPECL is ideal for such an application since it permits

the user to manage storage as he chooses and allows him to

give machine code definitions for the necessary pointer

operations. Access to the hardware level is isolated in

code generation templates called Compiler Control

Expressions (CCE). CCE's tell the compiler how to implement

a given operator, depending on the states of its operands.

The descriptions of operand states serve as goals for the

code generator as well as enabling code selection. The

CCE's contain enough information about register use and side

effects that optimization of expressions containing

user-specified operators need not be interrupted.

The compiler consists of three phases. The first

labels the program tree with temporary storage requirements

(for subtrees free of common subexpressions (CSE)) in a

manner similar to the Sethi-Ullman method. Other properties

that can be deduced at this time are brought out and

attached to the tree. An initial pruning of the possible

code generation templates takes place as well.

23

The second phase operates on a partially flattened

version of the tree. It reorders computations to try to

minimize the use of temporary storage. This step is

necessary because the Sethi-Ullman algorithm does not allow

for CSE's. The method is heuristic and incomplete because

the minimization problem is polynomial complete.

Register allocation and assignment are also performed

during the second phase. Like minimization, the assignment

problem is polynomial complete, and it will be handled

heuristically.

The third phase is straightforward code generation.

Starting from a trial ordering of the expressions in

each context (straight-line program section), the

temporary-minimization procedure examines the variation in

storage requirements over each context. The vicinities of

peaks in the requirements are scanned for target positions

that meet a simple numeric criterion based on the temporary

usage and result size of the neighboring computations.

Expressions are moved to these favorable positions in order

to reduce overall storage use. CSE-free subtrees move as

units, subject to safety contraints. Most of the time used

by this process is actually spent in recalculating the

temporary requirements after a move.

The register assignment algorithm first makes a

24

live-dead analysis of variables and common sub-expresseions

and determines the minimum distance to next use for these

items. This gives the information needed to perform

register allocation optimally in straight-line code.

Assignment is straightforward in such branch-free regions as

well. With control structure, however, the problem is to

match assignments at branches and join points. Heuristics

are needed to reduce the computation from a "try all

assignments" approach. At present, we have only a simple

algorithm for this problem. As usual, the issue is the

trade-off between the cost of the algorithm and the

improvements in the code it makes.

In summary, then, SPECL will extend to the hardware

level the methodology that will characterize use of the SPL.

Users will be permitted to become involved in the

optimization of their programs, and they will not need to

forsake good structure to achieve highly efficient

performance.

25

